
ISRAEL JOURNAL OF MATHEMATICS 117 (2000), 157 181 

DIAGONALIZABLE DERIVATIONS OF 
FINITE-DIMENSIONAL ALGEBRAS I 

BY 

DANIEL R .  FARKAS 

Department of Mathematics, Virginia Polytechnic Institute and State University 
Blaeksburg, VA 24061, USA 
e-mail: farkas@math.vt.edu 

AND 

CHRISTOF GEISS 

Instituto de Matemdticas, UNAM 
Ciuadad Universitaria, C.P. 04510, Mexico D. F., Mexico 

e-mail: christof@math.unam.mx 

AND 

EDWARD L. GREEN 

Department of Mathematics, Virginia Polytechnic Institute and State University 
Blaeksburg, VA 24061, USA 
e-mail: green@math.vt.edu 

AND 

EDUARDO N. MARCOS 

Departamento de Matemdtica, L M.E. 
Universidade de $5o Paulo, CP 66281, $5o Paulo, SP05389.970, Brasil 

e-mail: enmareos@ime.usp.br 

ABSTRACT 

Diagonalizable derivations of a finite-dimensional algebra usually span 

an ideal in the Lie algebra of all derivations. This ideal is studied for 

underlying graded, monomial, and path algebras. 

Received January  10, 1999 

157 



158 D.R.  FARKAS, C. GEISS, E. L. GREEN AND E. N. MARCOS Isr. J. Math. 

I n t r o d u c t i o n  

This study traces its ancestry to a venerable example. The polynomial algebra 

k[X1,..., Xn] over the field k can be graded by total degree. The Euler derivation 

0 
E = X J o x j  

j = l  

has the remarkable property that  E(m) = deg(m)m for every monomial m. 

More generally, suppose that  G is a group and R is a G-graded k-algebra. Every 

additive character X E Hom(G, k +) can be assigned a derivation D x E Der(R) 

according to the rule 

G ( r )  = x(g)r  

for every r E Rg, the homogeneous component of "degree" g E G. Obviously, D x 

is diagonalizabte. Conversely, if D is a diagonalizable derivation of the k-algebra 

S and H is the additive subgroup of k generated by the eigenvalues of D then, 

for the inclusion map t: H -4 k +, we have D = D~. 

In the case that  R is a finite-dimensional k-elementary algebra, it can be pre- 

sented as kF/I where kF is a path  algebra. The graph F together with the ideal of 

relations I define a fundamental group; once certain parameters  are specified, the 

fundamental  group grades R. The diagonalizable derivations which arise make a 

mathemat ica l  appearance in several contexts, including computations of H 1 (R). 

These observations, which are discussed in [FGM], inspired a general project on 

diagonalizable derivations. 

While trying to compute examples, it became clear that  a bet ter  understanding 

of diagonalizable derivations was required. At first glance, it is not obvious 

that  the set of diagonalizable derivations of a finite-dimensional algebra has any 

structure. However, it turns out that  their span is a Lie ideal in the Lie algebra 

of all derivations over fields of characteristic zero and algebraically closed fields 

of positive characteristic. (It may be that  there is no genuine restriction on the 

scalar field.) This result is Lie theoretic and occupies section 1 of the paper.  It  

is fundamental  to all that  follows. 

Section 2 is devoted to examples which are finite-dimensional algebras over a 

field of characteristic zero. Here are some highlights. A finite-dimensional com- 

mutat ive  algebra can be identified with k [X1, . . . ,  X,~]/I for some ideal I of finite 

codimension. When I is a monomial ideal the diagonalizable derivations span 

the Lie algebra of all derivations. The same result is true if I is a homogeneous 

ideal and n = 1 or n -- 2 but  it fails for n > 3. Diagonalizable derivations span in 

the parallel case of non¢ommutative monomial algebras, i.e., the free algebra or, 
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more generally, a pa th  algebra modulo word relations. The arguments we present 

depend on a rudimentary understanding of Lie algebras, in particular sl(2). 

Our knowledge of derivations for algebras over fields of finite characteristic 

is spottier. In section 3, we show that  the entire Lie algebra is spanned by 

diagonalizable ones for finite-dimensional images of the polynomial algebra in 

one variable and for commutat ive monomial algebras over an algebraically closed 

field different from 2. We establish the same result for finite-dimensional non- 

commutat ive monomial algebras only with the additional hypothesis that  all long 

words (relative to the characteristic) are relations. 

The last section handles a technical issue. There are some algebras for which 

there is more than one natural  choice of "constants". For example, one might 

require that  all appropriate derivations of path algebras vanish on the vertex 

idempotents. We show that  the choice is irrelevant for understanding the span 

of diagonalizable derivations of images of path algebras and their relatives. 

1. Lie  idea ls  

For the remainder of the paper, k will always denote a field. Unless specified 

to the contrary, all algebras and vector spaces will have scalar field k. Suppose 

that  L: is a Lie algebra of endomorphisms of some (possibly infinite dimensional) 

vector space. We say that  x C E is s p a n n e d - b y - s p l i t  provided x is a sum of 

diagonalizable endomorphisms in/~. (One of the authors asserts that  the correct 

pronunciation for this term is "splat".) The subspace of all spanned-by-split  

elements is denoted SP(E). We shall show that  if/2 is a finite-dimensional Lie 

algebra and chark = 0 or £ is a finite-dimensional restricted Lie algebra and k is 

an algebraically closed field of positive characteristic then SP(E) is a Lie ideal of 

/:. Some restriction on k turns out to be necessary for the second part.  

LEMMA 1.1: Assume that char k = 0 and that E is a Lie algebra of  endomor- 

phisms of  a finite-dimensional space. I f  a, b E £ satisfy [a, b] = #b for a nonzero 

scalar # and b is nilpotent then 

e x p ( l b ~ - l a e x p ( l b ~  = a + b. 
\ #  / \ #  / 

Proo~ Since ! b  and b commute, tt 

for any polynomial f E k[X]. The nilpotence of b implies that  exp can be replaced 
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with a polynomial when evaluating at b. Hence 

[a, e x p ( ~ b ) ]  = e x p ( l b )  b 

in the Lie algebra of all endomorphisms. The lemma now follows from a simple 

algebraic manipulation and the fact that exp(~b) is invertible. 1 

THEOREM 1.1: Assume that chark -- 0 and t h a t / :  is a Lie algebra of endomor- 

phisms of a ~nite-dimensional space V. Then SP(E) is a Lie ideal of £. 

Proof'. It suffices to prove that if a C £ is diagonalizable then [a, b] E SP(£) 

for all b E £. As indicated in 4.2 of [Hu], ada  is also diagonalizable. Write 

b = )--~ b(#) where b(#) is an eigenvector for ad a corresponding to eigenvalue ~. 

Then [a, b] = ~ #b(#), where we may assume that # ~ 0. 

We claim that  b(#) is nilpotent for # ~ 0. In the Lie algebra of all endomor- 

p h i s m s ,  [a, b(/z) n] : n/.tb(/.t) n. Thus if b(#) n is nonzero for all positive integers n 

then adgl(v) a has infinitely many eigenvalues, an impossibility. This establishes 

the claim. Alternatively, we may invoke the Jacobson Lemma ([Hell). 

Apply the lemma to conclude that a+b(#) is similar to a. In particular, a+b(#) 

is diagonalizable. Hence 

#b(#) = #((a + b(#)) - a) e SP(£).  

Summing, we obtain [a, b] E SP(£).  II 

The theorem has a concrete interpretation which can be quite useful. Assume 

that  a E / :  is diagonalizable and let 

v:@Ev  
be the corresponding eigenspace decomposition of the underlying space, with A 

running over the eigenvalues. Let ~ be the idempotent projection from V to V~. 

Every endomorphism b of V can now be written in block form with 7r~bTr~ in the 

(~,/~)-block. If b happens to be an eigenvector of ad a for the eigenvalue # then 

b =  E 7r~b~r~. 

The nilpotence argument effectively says that,  in characteristic zero, the eigen- 

values of a can be ordered so that the b we have described can be written in 

strictly lower block triangular form. We can now avoid the "exp trick" if we 
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wish. The  assertion tha t  a + b is diagonalizable follows from a generalization of 

the well known exercise tha t  a matr ix  with distinct eigenvalues is diagonalizable: 

if  a matrix is in lower block triangular form and the diagonal blocks have the 

form ~/I for distinct scalar values of  3' then the matrix is diagonalizable. 

The technique of the theorem applies to Lie algebras over fields characterist ic 

p > 0 when we are able to "avoid or break cycles". We can make this clear with 

a graph. Let V be a finite-dimensional vector space over the field k with chark = 

p > 0. Assume tha t  12 is a Lie algebra of endomorphisms of V, tha t  a, b E/2,  and 

tha t  a is diagonalizable. We borrow the notat ion from the paragraphs  above. 

Assume p ¢ 0. The  a-graph for b(p) has as vertices the collection of nonzero 

7r~brr~ such tha t  a - ~- = p. There  is an arrow from 7r~bTr~ to 7rob~r, provided 

tha t  r = p. (We emphasize tha t  each 7r~b~c~ is an endomorphism of V which 

is an eigenvector for a d a  but  it need not lie in 12.) The  a-graph for b(p) is a 

disconnected union of line segments and cycles of length p. 

The  point  is tha t  if there are no cycles then b(#) p = 0. In tha t  case, the 

characterist ic  zero a rgument  carries over with exp replaced by the t runca ted  

exponential ,  

1 2 1 1)!xP_l. texp(x) = 1 + x + ~.x + - ' '  + (p _ - - - -L~  

We shall see later tha t  it is also possible to break a cycle. There  may be some 

nonzero :rob:r~ which turns  out to be in/2. If so, set b(#)l = ~robTr, and b(#)2 = 

b(#) - b(#)l .  Then  b(tt)~ = 0 and [a, b(~)d = t~b(t~)~ for i = 1 and 2. Thus  the 

t runca ted  version of the first l emma holds. We conclude tha t  bo th  b(tt)l and 

b(#)2 lie in SP(/2), whence b(#) does as well. 

Entirely different ideas are needed to handle a general Lie ideal theorem in 

positive characteristic.  Here we borrow an identity from the elementary theory  

of restricted Lie algebras, see [J], 5 .7 .  If r and s lie in some associative algebra 

over a field of  characterist ic p > 0 then 

pt _ i 

(ads)P~- l ( r )  : E sJrsP~-l-J 
j=0 

for all positive integers t. 

LEMMA 1.2: Assume that k is an infinite field of characteristic p and that/2 is a 

Lie algebra of vector space endomorphisms which is closed under the pth-power 

map.  F/x  a positive integer t. f f  a, c E/2 are such that (Ac + a) p~ C SP(£)  for all 

A C k then 

( ada )P t - l ( c )  • SP(/2). 
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Proof: Write 
pt--1 

(Ac+a)Pt = £P~cPt + a P ' +  E sj(c'a)AJ 
j = l  

in the algebra of endomorphisms. Specializing at A = O, we see that  a pt ~ SP(£).  

Since k is infinite, the formula holds for pt values of A and so a Vandermonde 

determinant argument allows us to solve for sj (c, a) in terms of (Ac + a) pt - a pt 

over varying A. Hence sj(c,a) • SP(£) for j = 1 , . . . , p t  _ 1. Now sl(c,a) = 

Ei+j=pt_l aJca i and, by the identity, this sum equals (ad a)pt-l(c). | 

THEOREM 1.2: Assume that k is an algebraically closed field of positive char- 

acteristic p. Suppose that £. is a Lie algebra of endomorphisms of a finite- 

dimensional space V which is closed under pth powers. Then SP(£)  is a Lie 

ideal of £. 

Proof: Choose t large enough so that pt exceeds the dimension of V. Since 

k is algebraically closed, we may use the Jordan Decomposition to write any 

endomorphism f of V as a sum of semisimple and nilpotent parts which commute. 

It follows from the choice of t that  fpt is semisimple. In particular, if f C £ then 

fpt • SP(E). Apply the lemma to f = ~c + a. For every a, c • / 2  we have 

(ad  a) pt-1 (c) • SP(£). 

Assume that  a • E is diagonalizable and b • £ is arbitrary. Write b --- ~ b(#), 

the decomposition of b as a sum of ad a eigenvectors. Then 

#P*- lb ( t t  ) = (ada)pt-l(b(It)) • S P ( / : ) .  

Hence if # # 0 we have b(#) E SP(£).  Since [a, b] = ~ # 0  #b(#) we see that  

[a, b] e SP(£) .  | 

The extra requirement that k be algebraically closed when k has positive 

characteristic appears suspicious. It reflects a surprising phenomenon. 

PROPOSITION 1.1: Assume that p is a prime and k = GF(p) .  Suppose that a 

and b are nonzero endomorphisms of a finite-dimensional vector space with the 

following properties: 

(i) ap = a; 
(ii) b p ~ 0 a n d b  p2 =0;  

(iii) [a,b] = b. 
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T h e n  a and  b genera te  a three-d imens ional  Lie algebra /~  such tha t  S P ( £ )  is no t  

a L ie  ideal o f  £ .  

Proof:  First  note  tha t  a is diagonalizable because it satisfies the  polynomia l  

X p - X ,  which splits into dist inct  linear factors in k[X].  Second, 

[a, = = 0 

so b p is central  in E. I t  follows tha t  a, b, and b p span a Lie algebra.  

We claim tha t  a, b, and b p are linearly independent .  Suppose a a + / 3 b + T b  p = 0 

for a, /3,  7 C k. Then  

0 = [a, a a  +/36 + 7b p] =/~[a ,  b] =/36. 

Hence /3  = 0. Now a a  + 7b p = 0 implies tha t  the diagonalizable t r ans fo rmat ion  

a a  equals the  ni lpotent  t r ans format ion  7b p. Therefore  a = 7 = 0. 

To comple te  the  a rgument  tha t  a, b, and b p span a three-dimensional  res t r ic ted 

Lie a lgebra  we must  show tha t  the span is closed under  pth powers. This  is a 

consequence of a close look at  the formula  

p--1 

(a +  b)P = aP + aPb  + s (a, 
i----1 

for A C k. The  expression si(a,  b) is a linear combinat ion  of lef t-bracketed Lie 

words in a and b, each of which has length p and i appearances  of b. (See IS], 

page 7 for a discussion of these formulas.)  Since [a, b] and b c o m m u t e  in our 

context ,  we see t ha t  si(a,  b) = 0 for i > 2. As indicated in the previous theorem,  

s l ( a ,  b) = (ad a)P- l (b )  = b. Thus  

(a + Ab) p = a p + APb p + Ab 

= a +  A b +  Ati p. 

Therefore  
(ha  +/3b  + 7bP) p -- (ha  +/3b) p + vPb p2 

= a a  + av-1/3b + f~b p. 

We have verified t h a t / :  is a restr icted Lie a lgebra  with basis {a, b, bP}. 

Next ,  we use our formula  for pth powers to de termine  all of the diagonaliz- 

able m e m b e r s  of £ .  Cer ta in ly /3b  + "),b p is always nilpotent.  Thus  any possible 

diagonal izable  endomorph i sm is a scalar mult iple  of c = a +/3b  + vb p. Bu t  

c p = (a +/3b  + vbP) p = a + ~b + fib p = c + (/~ - ~/)b p. 



164 D.R. FARKAS, C. GEISS, E. L. GREEN AND E. N. MARCOS Isr. J. Math. 

Thus c satisfies the polynomial (X  p - X )  p. Assuming c is diagonalizable, it must 

satisfy X p - X .  That is,/3 -- V. Conversely, a +/3b +/3b p does satisfy X p - X ,  

making it diagonalizable. 

We conclude that SP(£) is the two-dimensional subspace of/2 with basis a and 

b + b p. Since [a, b] = b and b ¢ SP(£), we see that SP(£) is not a Lie ideal of l:. 
| 

We now demonstrate that Theorem 1.2 fails when k = GF(p).  Let R = 

k[X, Y ] / ( X  2, yp+a). The derivations Y~y  and X Y  o- % of k[X, Y] induce deriva- 

tions a and b, respectively, of R. An easy computation shows that the hypotheses 

of the proposition hold for a and b. 

We will apply our two Lie ideal theorems to Lie algebras of derivations. Sup- 

pose that R is an associative algebra. Let Der(R) denote the Lie algebra of all 

k-linear derivations from R to itself. The results of this section tell us that if R is 

a finite-dimensional k-algebra (chark = 0 or k is algebraically closed of positive 

characteristic) then SPDer(R) is a Lie ideal of Der(R). This statement will be 

referred to as the Lie Ideal Theorem. We do not have a counterexample to the 

assertion that SPDer(R) is a Lie ideal of Der(R) over all fields. 

The Lie Ideal Theorem has an antecedent in work of Herstein. The next lemma 

is based on Lemma 1.10 of [He2]. There is no restriction on the field. We denote 

the Lie ideal of Der(R) consisting of inner derivations of an algebra R by Inn(R); 

an alternate notation is ad R. 

LEMMA 1.3: Let e be an idempotent in the algebra R. I f  D C Der(R) then 

e +  D ( e ) - e D ( e )  and e - D ( e ) +  D(e)e 

are idempotents. Hence D(e) is a difference of two idempotents. | 

THEOREM 1.3: Let R be a finite-dimensional associative algebra over an 

algebraically closed field. Then SP(Inn(R)) is a Lie ideal of Der(R). 

Proo£" First observe that if e E R is an idempotent then the classical 

decomposition 

R = e r e  + eR(1 - e) + (1 - e)Re + (1 - e)R(1 - e) 

is also an eigenspace decomposition for ad e. Hence ad e is always diagonatizable. 

Let r E R. By decomposing the commutative subalgebra generated by r, we 

can write r -- s + n where s = ~ Aiei with A{ C k and the ei are commuting 
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idempotents, n is nilpotent, and Is, n] = 0. It follows that ads  is diagonalizable. 

Suppose that ad r is diagonalizable. Since ad r and ad s commute, ad r - a d  s is 

diagonalizable. Therefore ad n is both diagonalizable and nilpotent. We conclude 

that ad r = a d  s. 

Thus, in order to prove the theorem, we need only show that [ade, D] E 

SP(adR)  for e idempotent in R and D E Der(R). But lad e, D] = - a d D ( e ) .  

We are done by the lemma. | 

2. D e r i v a t i o n s  in c h a r a c t e r i s t i c  z e r o  

We wish to compute SPDer(R) for familiar classes and examples of finite- 

dimensional associative algebras R. In this section, k will always be a field 

of characteristic zero. We will further restrict our attention to well-behaved pos- 

itively graded algebras. For the time being, 

S = SO 0S1  0" ' "  0 St 

will denote a finite-dimensional graded algebra such that So = k and $1 generates 

S as an algebra. 

The Euler derivation E associated with the grading is defined by requiring that 

E(s) = ms for all s E Sm. Set D -- Der(S) and set D~ to be the eigenspace for 

ad E corresponding to the eigenvalue A. If x E Sm and D E D~ then 

ED(x)  = [E,D](x) + DE(x)  = (A + m)D(x) .  

It follows that A is an integer and A _> -1 .  Similarly, 

D = D - 1 0 D 0  OD1 0 " "  ODt -1  

with Di(Sj) C_ Si+j and [Di,Dj] C_ Di+j. 

LEMMA 2 . 1 : D - 1  = 0. 

Proof: Let D E D-1 and 0 ~ x E $1. There exists a positive integer m with 

x m = 0 and x m-1 ~ 0. Since D(x) E So and So = k, we have 

0 = D(x "~) = rnxm-lD(x) .  

It follows that D(x) = 0. In other words, D restricted to $1 is zero. Since $1 

generates S, we have D = O. | 

We now keep in mind that 

'D = "D 0 ~ "1)1 ~ " ' "  ~ "~ t -1-  
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LEMMA 2.2: Let H E l) be diagonalizable. I f  H = A + D with A E :Do and 

D E Ej>I :DJ then A is diagonalizable. 

Proof." It suffices to show that the restriction of A to S1 is diagonalizable. For 

any s E S we write 

s = s o + s l + . . . + s t  

according to the grading. Suppose H(s) = )~s. Looking at the component in 

degree one, we obtain A(sl)  = )~sl. 

Consider any w E $1 and expand w = ~ i  fljs(j) where the s(j) are eigenvec- 
tors for H and the flj are scalars. Projecting onto the degree one component, 

W = E f l J s ( J ) l "  
Y 

That  is, $1 is spanned by eigenvectors for A. I 

Regard 790 as a Lie algebra of endomorphisms of the finite-dimensional vector 

space $1. 

THEOREM 2.1: SPDer(S) -- SP(T)0) (~791 (~ " '"  (~ 79t-1. 

Proof: Suppose that D E :Di for some j 7~ 0. By the Lie Ideal Theorem, 

j[  , 1  E D] E SP Der(S). Hence 79j C SP Der(S) for all nonzero j .  As a consequence, 

SP Der(S) = (SP Der(S) N Do) G D1 0 " "  @ Dr- , .  

We have SP(Do) C SP Der(S) M:Do because any derivation which is diagonalizable 

on $1 is diagonalizable when extended to S. On the other hand, the lemma 

implies that  if B E :Do and B = ~ i ( A i  + Di) with Ai + Di diagonalizable in :D, 

Ai E :Do, and Di E ~ j > l  :DJ then 

B = E A ~  
i 

and each A~ is diagonalizable. Thus SP Der(S) M :Do C_ SP(:D0). I 

We apply the theorem to some examples. Notice that if the dimension of $1 

is 1 then 790 acts like scalars on $1; all such endomorphisms are diagonalizable. 

Hence all derivations of S are spanned-by-split. In other words, 

SP Der( k[X]/ ( Xm) ) = Der( k[X]/ ( x m )  ) 
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whenever chark = 0. Inspired, we look at commutative graded algebras with 

dim(S1) = 2. Assume that  k is algebraically closed and recall one of the standard 

notations for sl(2) (cf. [Hu]): 

( 0  1 )  ( 0  0 ) .  h : ( 1  0 ) 
x =  0 0 ; Y= 1 0 ' 0 - 1  " 

LEMMA 2.3: Every dement ofsl(2) is conjugate to e/ther x or a scalar multiple 

of h. 

Proof." If a E sl(2) is nilpotent and not zero, it's Jordan Canonical Form is 

0 1 "~. If is not then it has ~. Then -,~ is nilpotent eigenvalue a a nonzero 
0 0 ] 

alsoaneigenvalue. H e n c e a i s s i m i l a r t o  ( A  0 ) 0 -A " l 

LEMMA 2.4: Assume k is algebraically closed. Let V be a finite-dimensional 

irreducible sl(2)-module. I f  W is a subspace of V and x . W  C W then h . W  C_ W.  

Proof: We may assume that  sl(2) acts nontrivially on V and that W # 0. Let 

vo, v l , . . . ,  Vm be the "push-up" basis of V as described in 2.7 of [Hu]. We claim 

that if j is the largest subscript such that vj appears in the support of some 

vector in W then W has basis Vo,Vl , . . . ,  vj. It suffices to show that  these basis 
vectors of V lie in W. 

Say vj appears in the support of w. Then x j • w is a nonzero scalar multiple of 

v0. Hence v0 C W. Next, X j - 1  • W is a linear combination of v0 and vl with the 

coefficient of vl nonzero. Hence vl E W. Continuing in this. manner, we verify 
the claim. 

The lemma follows immediately because h. vi is always a scalar multiple of vi. 
| 

THEOREM 2.2: Assume k is algebraically closed and let S be a commutative 

graded algebra as described above. I f  the dimension of $1 is 2 then SP Der(S) = 
Der(S). 

Proof'. Let R denote the polynomial algebra k[X1,X2]. It can be graded by 

total degree, 

R = R o @ R I @ . . . .  

We identify S with R / I  for some homogeneous ideal I. Every derivation of S 

lifts to a derivation of R; indeed, the lifting respects the degree of derivations, as 
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determined by the respective Euler derivations. According to the main theorem 

of this section, we need to show that  Do is spanned by diagonalizable endomor- 

phisms. But  we can now identify Do with the stabilizer of I in gl(2). We are 

reduced to proving that  the Lie algebra of matrices in sl(2) which stabilize I is 

spanned-by-split. 

Clearly sl(2) stabilizes each homogeneous component Rj; as indicated in [Hu] 

2.7, each Rj is actually an irreducible sl(2)-module. Suppose that  a E sl(2). 

Then a stabilizes I if and only if it stabilizes each I (~ Rj. Assume I is stabilized 

by a. By the next-to-last lemma, a is either similar to a scalar multiple of h 

or to x. In the first case, a is obviously diagonalizable. In the second case, we 

may assume that  a = x and invoke the previous lemma to conclude that  h also 

stabilizes each I A Rj. The fact that  x is spanned-by-split in the stabilizer can 

be seen explicitly: 

( 1  1 ) , 
x = ( h + x ) - h  and h + x =  0 -1  " 

Let ~ denote the ideal generated by X 1 , . . . , X n  in the polynomial algebra 

k [ x l , . . . ,  

THEOREM 2.3: Assume that k is algebraically closed and let Q be a quadratic 

form in k[X1, . . . ,  X~]. Ifd > 3 and S = ]g[Xl, . . . ,  Xn]/(Q, ~d) t h e n  SP Der(S) = 

Der(S). 

Proof." By making a linear change of variables, we may assume that  

Q -- + . .  + 

with r < n. In analogy with the previous theorem, we need only show that  the 

stabilizer in gl(n) of the one-dimensional space k. Q is spanned by diagonalizable 

matrices. As a first approximation, it is easy to check that  the stabilizer consists 

of all block matrices of the form 

0 * 

where A runs over all matrices in gl(r) which stabilize Q. With a minimum of 

thought, we may now reduce to the case that  r = n. 

Write A = (aij) or, equivalently, 

o 
A = aij Xi OZj" 

i , j= l  
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The restriction on A is that  there exists a scalar A such that  

A(X21 +.. .  + X~) =,X(X~ +.. .  + X~). 

Calculating, this means 2aii = A for 1 < i < r and 2a~j + 2aj~ = 0 for 1 _< i < 

j <_ r. In other words, A = AI~×r + K where K ~ = - K .  This space of matrices 

has as basis Ir×~ and all differences of matrix units eij - eji for 1 _< i < j < r. 

These are all diagonalizable over k because ( 0 1 "~ has distinct eigenvalues 
\ - 1  0 / 

in q(z). | 

An easier argument along these lines shows that  all derivations of 

k[X1,..., Xn]/(g, ~d) are spanned-by-split for any field k of characteristic zero 

and for 

g = x~ + x~ + . . .  + Xn ~ 

with d > s > 3. In this case, the stabilizer of k.g consists solely of scalar matrices. 

Of more interest is the example Q = X~ + X~ over the real numbers R.  The 

theorem still tells us that  the stabilizing Lie algebra consists of all ( a b "~ but 
\ - b  a ] 

this matr ix  has real eigenvalues (i.e., is diagonalizable!) only when b = 0. So it is 

not true that  all derivations are spanned-by-split when we drop the requirement 

that  k be algebraically closed. 

Given the evidence so far, one might hope that  SP Der(S) = Der(S) for finite- 

dimensional commutat ive graded algebras S over an algebraically closed field of 

characteristic zero. Unfortunately, the stabilizer in gl(3) of the one-dimensional 

space spanned by 

4(X21X2 _ 4X1X2X3  4._ X 4) + (2X13X3 _ X12X22) _~_ X1 4 

is the space of all matrices (a 0) 
0 a b • 

0 0 a 

(A tedious but routine computat ion is required.) This algebra obviously cannot 

be spanned by diagonalizables over any field. 

It  is possible to prove that  SP Der(S) = Der(S) for commutat ive monomial 

algebras S. Since the argument is the same as the one we shall present for 

noncommutat ive  monomial algebras, we change direction for the remainder of 

this section and s tudy noncommutative examples. Let k(X1,..., X,~} denote the 

free algebra on the letters X 1 , . . . , X n .  We grade it by length of words. Its Lie 
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algebra of degree zero derivations can then be identified with gl(n); in essence, 

the formal derivative X~ ~ makes sense as the unique derivation which extends 

the map on letters "replace Xj  with Xi and send all other letters to 0". 

Observe that if w is any word and 

0 xi b-2j(w) 0 

then we can recover i and j from knowing both expressions: compare letter counts 

in w and in any word in the support of Xio-~j(w). The same observation holds 

for commutative words in the polynomial algebra. 

THEOREM 2.4: Let S = k ( X 1 , . . . , X n ) / I  be a finite-dimensional monomial 

algebra, so that I is generated by words and I N span{X1, . . .  ,Xn} -= O. Then 

SP Der(S) = Der(S). (The same assertion is true with the polynomial algebra 

replacing the free algebra.) 

Proo[: As we have done earlier, identify Do with the space of degree zero deriva- 

tions of the free algebra which stabilize I. If 0 is such a derivation and w is a fixed 

word in I,  then the observation implies that the supports of each Xi ~ (w), for 

those partial derivatives which appear in 0 with nonzero coefficient, are pairwise 

disjoint. If a linear combination of words lies in I then the monomial property 

forces each word in the support to lie in I. We conclude that when X. o appears z O X j  

in 0 and Xi ~zj  (w) ~ 0 then 

X 0 ' OXj (w) e I. 

Of course, X. o (w) E I when the partial derivative vanishes on w as well. Since z O X j  

o also stabilizes I.  In w is arbitrary in I,  we conclude that this choice of Xi 

summary, the stabilizer of I has a basis which consists of some of the X. o O X j  " 

Notice that  X~ ~ always stabilizes words in I for i = 1 , . . . ,  n. Thus the stabi- 

lizer in gl(n) of I has a basis consisting of some of the matrix units and includes 

all diagonal matrices. Let A denote a diagonal matrix with distinct scalars down 

the diagonal. Then A + e i j  is diagonalizable provided i ¢ j .  It follows that  

each off-diagonal matrix unit in the stabilizer is the difference of diagonalizable 

members of tne'stabilizer. Thus Der(S) is spanned by diagonalizables. II 

We modify our discussion in this section so that it applies to images of path 

algebras. Recall that if F is a finite directed multigraph and k is any field then 

we may form an algebra kF with a basis consisting of paths and multiplication 
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given by concatenation. Here a vertex is regarded as a path of length zero and 

the product of two paths is zero if they do not concatenate. By definition, the 

vertices become idempotents in kF. This leads us to expand our class of graded 

algebras. 

Consider graded algebras S = So ® . , ,  • St for which 

So = k . el (~ - . . O k . en 

with orthogonal idempotents ej and with S generated as an algebra by So and 

$1. Denote by 7)* the Lie algebra of derivations of S which vanish on So. It 

remains true that the Euler derivation E lies in 7)* and that 

11" = 11"-1 0 11('3 O ' "  O 11e*-1" 

We show that 7:)*_ 1 = 0. Since 1 = el + --" + en we have S 1 ---- ~ i , j  e i S l e j  • 

Thus we need only show that D(x)  = 0 for D E I1._ 1 and 0 ~ x E e iS le j .  Since 

D vanishes on the idempotents, 

D(x)  = D(e ixe j )  = e iD(x)e j .  

Now D(x)  E So yields D(x)  = 0 whenever i ~: j. For the case that i = j, notice 

that D(x)  E k .e i  and x = eixei; the elements D(x)  and x commute. The original 

argument that 7)_ 1 = 0 can now be mimicked. 

We will also need to know that if D E 11~ is diagonalizable when restricted to 

$1 then it is globally diagonalizable. But this is true because the idempotents ei 

are eigenvectors for D (lying, in fact, in the null space), so S is generated as an 

algebra by eigenvectors. Hence 

~)* ~-- ~DO (~ " ' "  (~ ~)t-- l"  

We have established that Theorem 2.1 holds for graded algebras with So ~ k n, 

provided we replace 7:) with 7:)*. 

We wish to use the path algebra in the role of the free algebra, to generalize 

the previous theorem. Grade kF by the length of paths. Denote the vertices by 

e l , . . . ,  en and the span of the arrows by A. If D is any degree zero derivation of 

kF which vanishes on vertices then the calculation two paragraphs above gives 

D ( e i A e j )  c e iAe j .  

As an example, if a and b are arrows which both begin at the same vertex and 

both end at the same vertex (though the origin and terminus need not coincide) 
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then the formal derivative a --° is such a derivation. (This is the obvious map Ob 
on arrows and extends uniquely to a derivation of the full algebra.) It is now 

immediate that the degree zero derivations of kF which vanish on vertices can 

be identified with the span of all linear transformations T: A --+ ,4 such that 

T(e iAe j )  C_ eiAej  for all i and j. It can be identified, equivalently, with the span 

of all a ° where a and b are arrows sharing origin and terminus• 

We have provided all of the pieces to adapt the monomial theorem without 

further ado. The star in the statement below refers to the requirement that 

derivations vanish on So; we will be able to remove the star after Theorem 4.1. 

THEOREM 2.5: Let S = k F / I  be a ~nite-dimensional path-monomial algebra, so 

that I is an ideal generated by words of length at least 2. Then SP Der* (S) = 

Der*(S). | 

3. D e r i v a t i o n s  in pos i t ive  cha rac t e r i s t i c  

We begin with an anomaly. Assume that chark = 2 and consider the algebra 

R = k [X] / ( xa ) .  Any D E Der(R) is determined by its value on X; conversely, 

any assignment 

X ~ ao + a l X  + a2X 2 + a3 X3 

defines a derivation because the obvious lift to a derivation of k[X] vanishes on 

X 4. For which values of the ai is the derivation diagonalizable? The matrix for 

the associated derivation D with respect to the basis 1, X, X 2, X 3 is (0 000) 
0 al 0 0 

0 a2 0 ao 

0 a3 0 al 

Its characteristic polynomial is T 2 ( T -  al) 2. If al = 0 then D is diagonalizable 

only when D = 0. Suppose al ~ 0. Then D is diagonalizable if and only if 

D 2 - a iD  = 0. This holds if and only if a3 = 0. It follows that 

SPDer(R) = {D E Der(R) I D ( X )  = ao + a l X  + a2X2}. 

Obviously, this is not all of Der(R). It turns out that  we have simply encountered 

some characteristic 2 misbehavior. 

To explain this comment, we look again at the polynomial algebra. We begin 

with no restrictions on k. If m is a monomial in k[X1, . . .  ,Xn] then degdm ) is 
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the number  of appearances  of Xi in m; we will view the degree as an integer 

even when k has positive characteristic. If S = k[X1, . . . ,Xn]/ I  for an ideal 

I then every derivation of S is the image of a derivation D of the polynomial  

algebra which stabilizes I .  We will write D E Der(S) (mod I) .  The  next l emma 

generalizes the observation preceding the description of SP Der in the monomial  

case, Theorem 2.4. It is false for noncommuta t ive  monomial  algebras. 

LEMMA 3.1: 

spans Der(S).  

Proo~ 

Let S = k[X1,. . . ,  Xn]/I with [ a monomial ideal. Then 

{ 0 } 
m ~ t  t E Der(S) (mod l)  m is a monomial 

Suppose tha t  a, b, and w are monomials  and 

0 0 
a~-~i (w ) = b ~ j  (w). 

We claim tha t  either a = b and i = j or tha t  ao-~7(w ) is a scalar multiple of 

w. We may assume that  ~x~(W) ¢ 0. If  i = j then a = b. If ao-~(w ) is not  a 

multiple of w then degia = 0, so 

0 
deg i a_w-c-~(w ) = (deg i w) - 1. 

UAi 

But  if i ~ j then 
0 

deg i b~-~j(w) k deg i w. 

The  contradict ion forces ao-~(w ) to be a multiple of w as claimed. 

Assume tha t  D E Der(S)  (mod I)  and expand 

0 
D = E ;~ijmij OXj" 

i , j  

Here ,~ij is a nonzero scalar and mij is a monomial.  Let w be a monomial  relation 
0 in I .  According to the claim, the m i j ~ ( w )  which are not multiples of w are 

dist inct  monomials .  They  each lie in I because I is monomial .  We conclude tha t  

mijo@j(w) E I for each i , j  in the sum defining D. Tha t  is, m. .  o stabilizes I .  97 OXj 
| 
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THEOREM 3.1: Assume that k is an algebraically closed field of characteristic 
p > 2. I f S  = k[X1, . . . ,  Xn] / I  is finite-dimensional with I a monomial ideal then 
SP Der(S) = Der(S). 

Proo~ We may assume that no indeterminate Xj lies in I. By virtue of 

the lemma, it suffices to prove for monomials m that m ~ x  t is spanned-by-split 

whenever m°~ox, E Der(S) (mod I). 
It is easy to check that X o stabilizes I and is diagonalizable (monomials 30Xj 

being eigenvectors) for j = 1 , . . . ,  n. It follows from the Lie Ideal Theorem, with 

apologies for the abuse of notation, that  

0 0 
[ X t - ~ t , m - ~ t ]  E SPDer(S) (mod I) 

for all m°--~-ox, E Der(S) (mod I). Hence 

0 
(deg t m - 1)m~--~ E SP Der(S) 

o a t  
(mod I). 

It follows that  
0 

m ~ t  t E SPDer(S) (mod I) 

unless deg t m - 1 (mod p). So assume the latter situation. We sudivide into 

two cases: either deg t m > 1 or deg t m = 1. 
Consider the first case and set 

m 

Xt 

This derivation stabilizes I. Notice that 

0 
a x ,  (~n) = o. 

Our computation, with X 2 playing the role of m, yields 

2 0 
Xt ~ t t  E SP Der(S) (mod I). 

Hence 

But 

[Xt2 0 _ 0 OX-~' r a ~ t t  ] E SP Der(S) 

2 0  _ a a 

(mod I). 

0 
- -  2 m - -  

3Xt  " 
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the assumptions that 

deg t m = 1 and 

If degjm = 0 for all j ¢ t then 

deg jm_=0  (modp)  for a l l j ¢ t .  

0 0 

which is clearly diagonalizable. Otherwise, there is some i ~ t such that degi m > 

2. Echoing the earlier construction, set 

m 

Xi 

Because Xt  appears in ff~, the derivation ff~b-~x~ stabilizes I. Now 

_ a x __o ] a 

2 0 (Successful calculation requires that Xi appear in ff~.) Since X i ~ E SP Der(S), 

we conclude, once again, that m ~ x  ' ~ SP Der(S). | 

COROLLARY 3.1 : Assume that k is an algebraically closed field with chark ~ 2. 

If f ¢ k[X] is a nonconstant polynomial then 

SP Der(k[X]/ ( f )  ) = Der(k[X]/(f)  ). 

Proof: By factoring f and exploiting the compatibility of Der and SPDer with 

cartesian products, we reduce to the case that f is a power of a linear polynomial. 

By a change of variable, we may assume that f = X d for some positive integer 

d. This case has been handled in Theorems 2.4 and 3.1. | 

The requirement that k be algebraically closed in the previous theorem stems 

from our use of the Lie Ideal Theorem. The much more modest result that  

SP Der(k[X]/(xd))  is a Lie ideal of Der(k[X]/(Xd))for all k is established below 

without the restriction. The argument is a good illustration of "cycle avoiding". 

0 
r n ~ t  t E SPDer(S)  (rood I). 

We must still study the possibility that deg t m = 1. If j # t then 

[o  o] o 
x j  g2 , m = (deg  " 

The Lie Ideal Theorem implies that too@ ~ ¢ SP Der(S) whenever there is some 

j distinct from t with degj m not congruent to 0 (mod p). We are reduced to 
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PROPOSITION 3.1: Assume chark > 0. Then SP Der ( k [X] / ( xd ) )  is a Lie ideal 

of  Der( k[XJ / ( X d) ). 

Proof'. Set S = k [ X ] / ( X  d) and set So to be the span of all X pt for integers t 

with pt < d. (In this argument, we will freely identify X ~ with its image in S 

when n < d.) The bulk of the proof will be devoted to showing that  if A is a 

nonzero diagonalizable derivation of S then 

So = {g E S IA(g)  = 0} 

and the eigenvalues of A consist of integer multiples of a single scalar. Call the 

scalar A. Let 's  see how to finish the proposition with this information. We must 

prove that  [A, D] E SP Der(S) for any D E Der(S). It  is enough to show that  

the A-graph for the eigenderivation D(p) has no cycles. Now it # 0 and all 

eigenvalues of adA are differences of eigenvalues of A; thus # = jA for some 

integer j not congruent to 0 mod p. It  follows that  there can be at most one 

cycle and it goes through 7ruDTr0. But 7r0(S) = So and every derivation vanishes 

on So. In other words, n~DTr0 = 0, so it is not really in the graph after all. 

We proceed to the heart of the proof. Suppose A is a nonzero diagonalizable 

derivation. There must be some s E S which has X in its support  and satisfies 

A(s)  = As for some scalar ,~. We first argue that  ,~ :fi 0. Otherwise, A(s)  = O. 

Since A(1) = 0, we could assume that  X is the lowest term of s. Then X h is the 

lowest te rm of s h for h = 1, 2 , . . . ,  d - 1 and A(s  h) = 0 for these values of h. It  

follows that  {s h [ h = O, 1 , . . . ,  d - 1} constitutes a basis for S, forcing A = 0. 

(Equivalently, we may argue that  if s has lowest term X then s generates the 

radical of S.) 

So far, we know that  A(s)  = )~s with A =fi 0. For m = 1 , 2 , . . . , p -  1 we 

have A(s  m) = (rn)~)s m and X m lies in the support of sm. Fix one such rn and 

consider t _> 0 with pt + m < d. Then A(XPt s  m) = (rn)~)(Xpts "~) and X pt+m is 

the smallest power of X in the support  of Xpts  rn whose exponent is congruent 

to m (rood p). It  follows that  

{ Xptsm I pt + m < d} 

is a linearly independent set of eigenvectors for the eigenvalue mA. We add up 

the number  of independent eigenvectors for A we have explicitly produced. There 

is one X pt in the eigenspace corresponding to zero for each non-negative multiple 

of p smaller than d. For each 1 < rn <_ p - 1 we have listed one eigenvector 

corresponding to mA for each positive integer congruent to m (rood p) which 



Vol. 117, 2 0 0 0  DIAGONALIZABLE DERIVATIONS 177 

is less than  d. The  total number  of linearly independent  eigenvectors we have 

const ructed  is obviously d. Therefore we have an explicit basis of eigenvectors. 

In part icular,  the eigenspace corresponding to 0 is contained in So. Since the 

opposite conta inment  is trivial, we see that  So is the entire eigenspace, as we had 

hoped.  1 

We turn  next to noncommuta t ive  monomial  algebras. Al though little is under- 

s tood in this case, we are able to show tha t  all derivations are spanned-by-spli t  

when long words do not survive. The next lemma prepares us for cycle breaking. 

LEMMA 3.2: Assume that  chark = p > 0. Let  S = So @ S1 • ' ' '  ~ Sp-1 be a 

graded k-algebra and have 7rm denote the project ion o r s  on Sin. Suppose  that  S 

is generated by So and $1 wi th  S~ = O. I f  0 < # <_ p - 1 and D is any derivation 

o f  S then there exists  an n such that rri,+nDrrn is a derivation, the subscripts  

read modu lo  p. 

Proof: First consider 2 < u < p - 1. Then  

u-1 p-1 
a u - l - a  

D(Su)  ~- D(S~)  C_ Z ( S 1  )S(S 1 ) ~ Z S/3" 
a=0 /3=u--1 

It follows tha t  7r0D~r~ = 0. This argument  takes care of the case tha t  # ¢ p - 1 

by default.  

We complete  the proof  by demonst ra t ing tha t  7rp_lDTr0 is a derivation. It 

suffices to check the produc t  rule on uv with u E Si and v E Sj .  If  i ¢ 0 then 

e i t h e r u v = 0 o r u v E S i + j w i t h 0 < i + j _ < p - 1 .  Thus 

7ro(uv) = 0 and u(Trp_lDTCo)(v ) + (Tcp_tDvco)(u)v C SiSp-1 = O. 

Together  with the mirror argument ,  we have 

0 = (rrp_lDrro)(uv) = u(%_lDTro)(v)  + (rrp_,DTro)(U)V = 0 

unless bo th  u and v lie in So. However, if u, v E So then 

(TCp_lDTro)(Uv) = 7rp_l (uD(v)  + D(u )v )  

= u(rrp_lD)(v)  + (rrp_lD)(u)v 

= u(rrp_lDrro)(v ) + (rrp-lDrCo)(u)v. | 

THEOREM 3.2: A s s u m e  tha t  chark = p > 0. Let  S = k ( X 1 , . . . ,  X ~ ) / I  denote  a 

f ini te-dimensional  n o n c o m m u t a t i v e  monomial  algebra. Assume,  further,  that  I 
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contains all words with p appearances of the same letter but no singleton letters. 
Then SP Der(S) = Der(S). 

The same result holds for path-monomial algebras, without any added 

technicalities. 

Proof: If w is a word let degtw denote the number of appearances of Xt in 

w. We use the degree to give the Lie algebra of derivations for the free algebra 

R = k(X1, . . . ,  X~) a group grading relative to (Z/pZ) ~. (We will only study 

the grading as a vector space.) For a derivation w ~ 0  such that w is a word, set OXt 

5(wo-~, ) to be the n-tuple with deg t w - 1 (mod p) in the t th coordinate and 

deg t w (rood p) in the jth coordinate for j ¢ t. For a • (Z/pZ) ~, let :Da denote 

the vector space spanned by all such W ~ x  ' with 5 ( w & )  = a. The motivating 

identity is 
0 0 0 

where aj is the jth coordinate of 5(Wo-~ ). 
Assume that  I is an ideal of the free algebra which satisfies the hypotheses 

of the theorem. Let D be a derivation of the free algebra which stabilizes I. 

Certainly Xj  ~ °  stabilizes I because the ideal is monomial. Let Si be the span 

of the images of all words v such that degj v -= i (mod p). Then 

S = S o  ~ S 1  EI~ . . . EI~ ~ p _ I ,  

the algebra S is generated by So and $1, and the restriction on letter appearance 

implies that  S p = 0. The grading we have described is the grading on S in- 

duced by the image of the diagonalizable derivation Xj o ~ .  Now the eigenspace 

decomposition of D relative to Xj ~° is D = Do + "" + Dp-1 where 

D,~ • E Da- 
aj  = m  

Here we have used the identity given above. Each Dm stabilizes I (e.g., via 

a Vandermonde determinant argument) so the same eigenspace decomposition 

holds modulo I.  The lemma, in conjunction with cycle breaking, implies that  

D - D 0 • S P D e r ( S )  ( m o d I ) .  

First apply the previous paragraph to D with j -- 1, i.e., with the diagonaliz- 

o It says that the image of D in Der(S) lies in SP Der(S) able derivation X1 KR-~, • 
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if and only if the image of the projection of D in ~ 1  =0 :Da lies in SP Der(S). So 

we may assume that 

D E  ~ D ~ .  
a l ~ 0  

Since X2 ~ stabilizes ~ 1 = 0  73a, we may repeat our reduction with j = 2 and 

assume that  

D E ~ :Da. 
a l : a 2 = 0  

Iterating, we need only prove that if D stabilizes I and D E :Do then D E 

SP D e r ( S ) ( m o d  I). 

Any derivation in :Do is a linear combination of derivations wb-~x ~ for words w 

with 

deg t w - 1  (modp)  and d e g j w = 0  (modp) ,  j e t .  

If D stabilizes I we may discard all of those w with p appearances of any particular 

letter. This means we can limit our attention to linear combinations of w o_ OXt 
where 

deg t w = l  and d e g j w = 0  f o r j # t .  

0 In other words, we may assume that D is a linear combination of the Xtby , .  

Such a derivation is diagonalizable; its image lies in SP Der(S). I 

4. C h a n g e  o f  c o n s t a n t s  a n d  inne r  de r iva t i ons  

In dealing with path algebras, we considered derivations whose "constants" com- 

prised a larger associative subalgebra than k. We begin this section by analyzing 

the discrepancy between such a Lie algebra and the entire algebra of derivations. 

We will say that  a finite-dimensional algebra R is h y p e r s p l i t  if R/rad(R) is 

a finite product of full matrix algebras over k. For example, basic algebras are 

hypersplit. If R is hypersplit and we denote R/rad(R) by S then S is a separable 

algebra. Hence there exists a copy of S in R with R = S q) rad(R). We will write 

Ders(R) for the Lie algebra of derivations of R which vanish on S. 

LEMMA 4.1: Assume that R is a finite-dimensional hypersplit algebra and S is 

a semisimple complement of the radical of R inside R. If V is the span of all 

idempotents in R and C(S) is the centralizer of S in R then R = V + C(S). 

Proof: We begin with a simple observation in any ring. If e and f are idem- 

potents such that  f e  = 0, then for any a, the element e + ear is idempotent. 
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Write S = S1 X ' ' "  X Sq where each Si is a full matrix algebra over k; the cor- 

responding central idempotents are 71 , . . . ,  ~/q. If we look at R as an S-bimodule 

then it decomposes as a direct sum of simple Si ® Sj-modules for 1 < i , j  < q. If 

i ~ j then each element a in a simple Si ® Sj summand satisfies 

a = ~a~j; 

the initial comment in our proof implies that  a E V. If Si ~- Matd×g(k) then a 

simple Si ® Si summand M looks like Matd×d(k) with the usual bimodule action. 

Let eij denote the matrix unit in Matdxd(k) with 1 in the ( i , j )  position and 0 

in all other places. Assume that  i ¢ j and let b be the element of M identified 

with eij. Then eii• b. e j j  = b. It follows as above that  b C V. Notice that  when 

d _> 2 and i ~ j we have orthogonal idempotents e i i+ eji and - e j i  + ejj in S. 

Let b be the element of M already identified. Then 

(eli q- eji) • b. ( -e j i  q- ejj) E V. 

It  follows that  the member  of M identified with - e i i  + ejj lies in V. In summary, 

all of those elements of M identified with sl(d) belong to V. 

We have shown that  M -- (M A V) + (k - c) where c is the member  of M 

identified with the identity matrix. Certainly c C C(S).  Putt ing together the 

summands,  we obtain the result. | 

THEOREM 4.1: Assume that R is a finite-dimensional hypersplit algebra and S 

is a semisimple complement of the radicM of R inside R. Then 

Der(R) -- Ders(R) + SP(Inn(R)).  

Proof: Let D E Der(R). The restriction of D to S maps into H I ( S , R ) .  But 

Hi(S ,  R) = 0 by separability. Hence there is an element r E R such that  

D - a d r  E Ders(R) .  Use the lemma to write r -- (~-~Aie~) + c where the Ai 

are scalars, the ei are idempotents, and c centralizes S. As indicated in The- 

orem 1.3, each derivation adei  is diagonalizable and so a d ( ~  Aiei) belongs to 

SP(Inn(R)).  Obviously, adc  E Ders(R).  | 

COROLLARY 4.1: Assume that  R is a finite-dimensional hypersplit algebra and 

S is a semisimple complement of the radical of R inside R. I f  all derivations in 

Ders(R)  are spanned-by-split then all derivations in Der(R) are spanned-by-split. 

| 
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